TABEL BANTU | |||||||||||||||
A | B | C | A' | B' | C' | B+C | B.C | A.B' | A+B' | A.C | A+C | A'.B | A'+B | (A+B)' | (A.B)' |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
Hukum Komulatif | Hukum Asosiatif | |||||||||||
A+B | B+A | A.B | B.A | (A+B)+C | A+(B+C) | (A.B).C | A.(B.C) | |||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | |||||
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | |||||
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | |||||
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | |||||
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | |||||
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | |||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
Hukum Identity |
| |||||||||||
A+A | A | A.A | A.B+A.B' | (A+B).(A+B') |
| |||||||
1 | 1 | 1 | 1 | 1 |
| |||||||
1 | 1 | 1 | 1 | 1 |
| |||||||
1 | 1 | 1 | 1 | 1 |
| |||||||
1 | 1 | 1 | 1 | 1 |
| |||||||
0 | 0 | 0 | 0 | 0 |
| |||||||
0 | 0 | 0 | 0 | 0 |
| |||||||
0 | 0 | 0 | 0 | 0 |
| |||||||
0 | 0 | 0 | 0 | 0 |
| |||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
Hukum Distributif | |||
A.(B+C) | A.B+A.C | A+(B.C) | (A+B)(A+C) |
1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 |
0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
Hukum Redudansi | ||||||||
A+A.B | A.(A+B) | A | 0+A | 0.A | 1+A | 1.A | A+A' | A.A' |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| | Theoroma De Morgan | |||||
A+A'B | A+B | A(A'+B) | A.B | (A+B)' | A'.B' | (A.B)' | A'+B' |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
2. Soal
1. Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT)
1. A * 1 = 1
2. A * 0 = 0
3. A + 0 = 0
4. A * A = A
5. A * 1 = 1
2. Give the best definition of a literal?
1. A Boolean variable
2. The complement of a Boolean variable
3. 1 or 2
4. A Boolean variable interpreted literally
5. The actual understanding of a Boolean variable
3. Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer.
1. A + B + C
2. D + E
3. A'B'C'
4. D'E'
5. None of the above
4. Which of the following relationships represents the dual of the Boolean property x + x'y = x + y?
1. x'(x + y') = x'y'
2. x(x'y) = xy
3. x*x' + y = xy
4. x'(xy') = x'y'
5. x(x' + y) = xy
5. Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is:
1. Z + YZ
2. Z + XYZ
3. XZ
4. X + YZ
5. None of the above
6. Which of the following Boolean functions is algebraically complete?
1. F = xy
2. F = x + y
3. F = x'
4. F = xy + yz
5. F = x + y'
7. Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results?
1. A + B
2. A'B'
3. C + D + E
4. C'D'E'
5. A'B'C'D'E'
8. Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'?
1. F'= A+B+C+D+E
2. F'= ABCDE
3. F'= AB(C+D+E)
4. F'= AB+C'+D'+E'
5. F'= (A+B)CDE
9. An equivalent representation for the Boolean expression A' + 1 is
1. A
2. A'
3. 1
4. 0
10. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results?
1. ABCDEF
2. AB
3. AB + CD + EF
4. A + B + C + D + E + F
5. A + B(C+D(E+F))